# Non-Linear Modeling for Turbine Engine Impact Events

Presented to: FAA Analytical Methods in Aircraft Certification Workshop Blacksburg, VA

- By: Chip Queitzsch FAA Chief Scientist for Engine Dynamics
- Date: August 10, 2016



#### Agenda

- 33.94 Fan Blade Out regulation and where analysis fits
- Material modeling research to support non-linear dynamic analysis models
- Application examples
  - UEDDAM fragment barrier modeling
  - FBO blade containment modeling study
  - Open Rotor program test and analysis



# 33.94 FBO Regulation and Where Analysis Fits



# What do the 33.94 Blade Containment and Rotor Unbalance tests require?

"it must be **demonstrated by engine tests** that the engine is capable of **containing damage without catching fire** and **without failure of its mounting attachments** when **operated for at least 15 seconds**, .....

(1) Failure of the most critical compressor or fan blade while operating at maximum permissible r.p.m. ......"

#### The rule is prescriptive



# When can Analysis be used to supplement 33.94 test compliance?

- Post 33.94 certification test to fix test shortfalls
- With major and minor design changes in the same engine model:
  - Mount changes
  - Accessory changes
  - Casing, rotor, or plumbing changes
- With derivative engine models (amended TC's):
  - Modified containment
  - New fan section
- Analysis has not been accepted for containment
  - Supplemental fan rig test used to demonstrate containment



### FAA Policy Developed for Analysis Use

- The policy ANE-2006-33.94-2 provides structured method to use when applying analysis
- Limitations:
  - Analysis is only permitted for a derivative engine from a baseline engine that has undergone 33.94 certification testing
  - Analysis use is permitted on a case by case basis
  - Analysis methods must be validated

Validation should be tied to the parent engine FBO certification test, other relevant experience can support validation demonstration



# Preparing to use analysis in certification

#### Ideally, the applicant has:

- Performed a number of previous FBO tests
  - Has experience with success, failure, and design changes
- Performed significant analysis preparing for previous FBO tests
  - Understands event details and how to mitigate risk in tests
- Included significant instrumentation on previous FBO tests
  - Gained insight into the event time history characteristics
- Performed significant test/model correlation in earlier programs to understand past successes and failures
- Performed significant rig and lab studies to correlate modeling methods with design features and technologies
- Performed one or more validation exercises

While not all are mandatory, these practices help prepare an applicant for successful use of analysis



## **Engine Modeling & Analysis Methods**

- An engine structural model typically includes a combination of analysis methods, test results, and empirical data.
- Typical model elements:
  - Test demonstration of containment
  - Empirical fan rundown rate based on engine and rig test results
  - Engine dynamic FEA model for deflections and loads
  - Detailed FEA models for component stresses
- The engine model is an auditable combination of analysis, test, and empirical procedures, which must be reviewed with and accepted by the FAA.



## **Engine Model Validation**

- The applicant must show that the engine model predicts outcomes
- Validation is established by Pre-test predictions and post test comparisons.
  - Differences are expected but must be shown to have little or no effect on compliance.
  - When differences exist a sensitivity study may be needed.
- Post test calculations are not sufficient for validations.
- Post test model refinement is expected and encouraged. Refinements should be based on physics, not numerical tweaks to improve answers.



# **Applicant Challenges**

- The first challenge is model correlation with the baseline test
  - Pre-test predictions that do not match baseline test results
  - Unexpected failure modes uncovered by test
  - Insufficient instrumentation to provide correlation data
  - Inability to model complex non-linear response of some engine components
  - Modeling of tubes and hoses
- The second challenge is model validation before starting the derivative analysis
  - The baseline model has to be validated against the baseline test.
  - The baseline model is then updated to reflect the derivative configuration
  - Ability to model the differences must be validated
  - Determining which components to focus on and how close is adequate
- Prior test/analysis experience is critical to developing a successful certification by analysis program



## AIA §33.94 Working Group

#### Background

- Since 1984, when §33.94 was introduced there have been significant technology advancements:
  - materials,
  - manufacturing processes and controls,
  - engine design,
  - analysis methodologies, and
  - part integrity.
- Technology advancements may offer design and safety improvements but the prescriptive scope of the requirement may be limiting adoption.



#### AIA §33.94 Working Group

#### Task

- Determine if there is a need to change the requirements of §33.94, as well as the associated advisory and policy documents.
- If changes are needed provide recommendations for changes to the requirements, advisory and policy documents.
- Provide a report to the AIA at the conclusion of the task.



# **Other Engine Analysis Applications**

#### • Bird Strike Critical Point Assessment

- Determine critical conditions for bird tests
- Show whether ice slab or bird test is more critical and determine whether one test might serve for demonstration of the other requirement

#### Containment for other than highest energy location

Show containment capability for stages other than the one tested

#### Overspeed

Show that a rotor will not burst under the limiting overspeed condition



Material Modeling Research Supporting Non-Linear Dynamic Analysis Models





#### Different modes of material failure

An "ideal" material failure model provides accurate results for a broad range of impact conditions and material failure modes



In response to NTSB recommendations following the Sioux City rotor burst initiated accident, FAA initiated a research program to reduce risk from rotor burst events

- Formed team with industry, academia, and other federal agencies (UCB, Stanford, ASU, GWU, GMU, OSU, Boeing, Livermore, NAWC, NASA)
- Assumed basic analysis and test tools were available and mature
- Began test and analysis program to characterize damage from fragments and protection necessary to reduce risk
- Ran into problems correlating analysis with test
- Discovered material failure modeling was more mature for some applications than others
  - Models worked well in low strain rate problems (vehicle crash)
  - Models worked well in high strain rate problems (ballistic)
  - Models did not correlate for mid range (rotor burst)
- Led to formation of the LS-DYNA Aerospace Working Group



#### Different modes of material failure result when the orientation of a complex fragment is varied











**Ballistic limit test results** 

### ½" spherical projectile



1.5875mm (1/16") target



3.175mm (1/8") target



6.35mm (1/4") target



Transition of the failure modes could not be predicted using one common Johnson-Cook material model



Administration

## **Material Model Research Objectives**

Develop a tabulated, thermo-elastic/viscoplastic material model coupled with an accumulated regularized failure criterion that can incorporate high strain rate and temperature effects, and implement in LS-DYNA MAT\_224

- Develop a failure locus as a function of equivalent plastic strain at failure, stress triaxiality and Lode angle parameter.
- Develop a testing program to characterize strain-rate and temperature dependent flow and failure surfaces.
- Implement the new material model into LS-DYNA
- Validate the new material model against material specimen and impact tests



# Targeted Applications





- Fan Blade Out Containment
  - Assess Redesigns & Derivatives
- Containment Capability for Stages Not Requiring Test
- Aircraft Shielding Assessment for Rotor Burst Analysis
- Bird Strike Analysis







## Development of Material Failure Models for Aerospace Non-Linear Dynamics

#### • MAT 224 – (in LS-DYNA)

Tabulated elastic/viscoplastic material model coupled with an accumulated regularized failure criterion that can incorporate high strain rate and temperature effects)

#### • MAT 224\_GYS – (in LS-DYNA)

Generalized isotropic yield surface model for pressure independent metal plasticity considering yield strength differential effect in tension, compression and shear stress states

#### - MAT 264 - (in LS-DYNA)

Fully-tabulated 3D anisotropic plasticity model for transient dynamics of metals



#### Mat\_224 Material Model Development



Administration

## Range of Stress States Needed to Characterize Failure Surface

|                                                        | Stress<br>Triaxiality | Product<br>Triaxiality | Lode<br>Angle<br>Parameter | Illustration | $\frac{27}{2}\frac{J_3}{\sigma_{ws}^3} = 1$ Combined<br>Tension-Shear<br>No Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|-----------------------|------------------------|----------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biaxial stress<br>Tension                              | $-\frac{2}{3}$        | 0                      | -1                         |              | $\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0 \\ 0.8 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ |
| Uni-axial<br>Stress<br>Tension,<br>Confined<br>Lateral | $-\frac{1}{\sqrt{3}}$ | 0                      | 0                          |              | Bi-Axial<br>Tension $\frac{27}{2} \frac{J_3}{\sigma_{im}} = -1$ $\frac{-23}{-1/3} \frac{-1/3}{-1/3} \text{ Stress Triaxiality, } \sigma^* = \frac{p}{\sigma_{vm}} \frac{1/3}{-1/3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Uni-axial<br>Stress<br>Tension                         | $-\frac{1}{3}$        | 0                      | 1                          | ¥<br>        | PlainStress Axisymmetric(Ext) Axisymmetric(Comp) PlainStrain<br>- Tri=2/3 - Tri=1/SQRT3 - Tri=1/3 - Tri=0<br>- 'Tri=-1/SQRT3 - Tri=-2/3 Tri=-1/3<br>- Tri=-1/SQRT3 - Tri=-2/3 Tri=-1/3<br>- Tri=-1/SQRT(3) Shear Compression Bi-axial Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pure Shear                                             | 0                     | 0                      | 0                          | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uni-axial<br>Stress<br>Compression                     | $+\frac{1}{3}$        | 0                      | -1                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



#### **Specimen Tests to Characterizing Failure Surface**





τ.,

1.4 1.2 0.8 ef 0.6 0.9 0.4 0.8 ~ 0.7 -0.2 ± 0.6 DECOCOCO 0.5 n 0.4 Π -1 0.2 -0.5 -0.5 0 **Failure surface for** 0.5 -1.5 1 lode tri Al2024-T351 0 0.8 0.6 0.4 0.2 0.9 ~~ 0.8 --lode 0.7 ---₩ 0.6 --0.2 0.5~ 0.4~ -0.4 0.3 --0.6 0.4 0.2 -0.8 . -0.2 -0.8 -0.6 -0.4 -0.2 0 0.2 tri Federal Aviation Administration 26

#### MAT\_224 Material Model

# Generalized Isotropic Yield Model MAT\_224\_GYS

- The MAT\_224 yield function is not able to correctly represent a material with a *plastic* strength differential (tension ≠ compression)
  - MAT\_224 is fully isotropic
- MAT\_224\_GYS introduces a Generalized Isotropic Yield Surface model for pressure independent metal plasticity
  - Considers yield strength differential effects in tension, compression and shear stress states
- Tensile/compressive asymmetry is important for accurate modeling of HCP metals (e.g. Titanium)



# Simulation of Experimental Data Using MAT224\_GYS

- Differences in the Tension-Compression and Torsion for Aluminum (Al2024-T351) have been successfully simulated using MAT224\_GYS.
  - MAT224\_GYS and MAT224 force-deflection output has been compared for uni-axial compression test
  - GYS accurately predicts torque-rotation for the torsion test
- Tension-Compression asymmetry of Ti64 has been successfully simulated using MAT224\_GYS.
  - MAT224\_GYS and MAT224 force-deflection output has been compared for uni-axial compression test



# Al2024 Torsion & Uni-Axial Compression Tests and Simulations



# Anisotropic Material Model – MAT\_264

- Anisotropy can be extremely pronounced for certain materials and manufacturing processes
  - Forged and hollow core Ti fan blades
  - Cast turbine blades
  - Extrusions
- Lankford Coefficient (R-Value)
  - A measure of the anisotropy of the plastic flow

#### • If the R-Value is 1, then the material is isotropic

- Extruded magnesium or aluminum can have R-Values as low as 0.4 and as high as 2.0
- Similar variations occur and may be selectively optimized in the materials and manufacturing processes used for certain high energy engine parts (i.e. blades)
- Anisotropy will influence the localization of plastic deformation and failure





MASON



Federal Aviation Administration

## Anisotropy – currently available models

- Current approaches, both in aerospace and automotive, are based on *isotropic* material models and failure models
- Available anisotropic material models tend to focus on manufacturing applications
  - No rate and temperature dependency
  - These models tend to rely on parameterized inputs as opposed to tabulated hardening
  - The only tabulated anisotropic model is non-associated and only for plane stress applications
  - Designed for relatively small deformations



Federal Aviat Administratio

# Approach – MAT264

- Model simulates anisotropic plastic deformation
- Tabulated hardening curves allow simulation of test data (in all directions) for large deformations beyond necking
- Simulates asymmetric tensile/compressive response (typical for HCP metals) will be included
- Includes rate and temperature dependencies
- Model produces identical results to MAT\_224 when implemented with isotropic/symmetric material properties, and produces identical results to MAT\_224\_GYS when implemented with isotropic/asymmetric material properties



# Benefit of Anisotropic Material Model MAT\_264







Federal Aviation Administration

## **Future Material Model Development**

- 1. Complete validation for MAT\_264 (2016 2017)
- 2. Develop failure surfaces/models for anisotropic materials (2017 2018)
- 3. Develop composite material models (2015 2019)





Federal Aviation Administration

## Future Work – Apply to Fragment Impact Studies

**Typical Small Fragments** 





The HP turbine blade root mass, size, and tangential velocity make it a very significant fragment.



Generic Rectangular Projectile model used to assess impact obliquity sensitivity





Secondary Benefit: develop statistical penetration risk model supporting UEDDAM



# **Application examples**

- UEDDAM fragment barrier modeling
- FBO blade containment modeling study
- Open Rotor program test and analysis



# UEDDAM – Uncontained Debris Damage Assessment Model

- R&D task initiated under ARAC PPIHWG to include analysis of multiple fragments impacting multiple locations
  - Directive resulting from Sioux City
- UEDDAM is leveraged from existing DoD vulnerability assessment tools
  - Joint work with NAWC, China Lake
- UEDDAM provides statistical assessment of debris pattern and uses statistical models to assess probability of damage
- Barrier shielding analysis will be performed with LS-DYNA
  - Results used to create statistical models of barrier capability for UEDDAM





## **Rotor-burst Research with UEDDAM**

- Once specific vulnerability is established, mitigation studies include:
  - System separation and redundancy
  - Move critical components to shield with aircraft structure
  - Develop additional protective barrier
  - LS-DYNA used for detailed design and analysis of impact events





# **Barrier Design example**

#### • Fabric Shielding

- SRI international initiated work
- SRI Teamed with UC Berkeley and Boeing for aircraft shielding
- LS-DYNA used for detailed design and analysis of impact events





# **Application examples**

- UEDDAM fragment barrier modeling
- FBO blade containment modeling study
- Open Rotor program test and analysis



# Fan Blade Out Rig Model

- Develop a small diameter fan rig model that:
  - Has fan dynamic characteristics of modern wide chord high bypass turbofan engine
    - 40" dia fan, 20 blades, integrally bladed disk, solid wall containment
  - Is capable of simulating the initial containment event
    - Blade release, impact with trail blade, containment, fragmentation

#### Model will be used for:

- Material model development studies
- Containment method studies
- Fan/case interaction studies
- Initial event dynamics studies



# Fan Rig Model







#### Fan Blade Out Rig Model

- Simulates a development test rig, not a full engine
- Fan rigs are used by Engine OEM's to develop and validate containment systems



## **First Three Phases of Blade Containment**



(Phases 4 & 5 are run down and windmill)





## Damage to the Containment Case at the Footprint of Root Impact



Accurate replication of the blade out event is critical for accurately predicting case containment capability



# Effect of Material Model on Blade Break-up

Four simulations using "similar" material models

- 3 with MAT\_224
- 1 with Johnson-Cook



Predicted Failure is highly dependent on the accuracy of the material model



45<sup>4</sup>

# **FBO Containment Modeling**

#### **Status Today**

- Many OEM's have developed a level of modeling that allows them to address certain problems that have arisen in FBO testing
- To date, no OEM has developed a sufficiently predictive capability to use analysis in place of test for *containment* certification
- Analysis is used for derivative certification where containment has been demonstrated in the baseline model test and changes to containment via rig test
  - Analysis addresses: safe shut down, will not catch fire, and mount integrity



# **Application examples**

- UEDDAM fragment barrier modeling
- FBO blade containment modeling study
- Open Rotor program test and analysis



## Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

#### **Collaborative Program with:**

- NASA Glenn Research Center, Cleveland, Ohio
- FAA William J. Hughes Technical Center, Atlantic City, NJ
- Naval Air Warfare Center, Weapons Division, China Lake, CA



# **Background** – what is an open rotor?

- In the 1980s open rotor engines were developed for improved fuel efficiency
- Technical challenges and lower fuel prices eventually reduced interest
- There has been recent renewed interest in these engines
- FAA goal is equivalent level of safety as ducted fan engines
- FAA investigating feasibility of fuselage shielding for open rotor engines



#### GE UnDucted Fan (UDF)



Pratt & Whitney/Hamilton Standard/Allison 578–DX



# FAA Open Rotor Shielding Feasibility Study

• FAA selected a medium range aircraft configuration with a high wing and wing mounted open rotor engines



- Trajectory analyses conducted at NASA/GRC to predict the blade release angles for the worst case impact scenario
- Computational analyses conducted at NASA/GRC to predict minimum composite shield thickness to prevent penetration
- LS-DYNA predictions based on model correlation with small scale ballistics testing
- Test configuration design worst case scenario
- Full scale subcomponent test conducted at China Lake Naval Air Warfare Center



### Blade





- Overall length: 41.25"
- Weight: 15.11 lb



# **Shielding Feasibility Study**

• Trajectory analysis predicted blade release angles for the blade to impact the fuselage with a normal velocity vector aligned with the long axis of the blade.





# **FAA Feasibility Study**

Test Configuration Design





# **Pre-test Predictions**

 Pre-test simulations predicted that a 20 ply composite panel would allow the blade to penetrate and a 24 ply panel would prevent penetration





# **Dynamic Open Rotor Composite Shield Test**





# **Test Observations**

- Blade separation occurred at desired clock position
- Blades separated cleanly from root section
- Blades traveled to target panels impacting end on (~90 degree impact)
- Both blades impacted the target panels
- Impact
  - 24 ply panel Deflected blade with no through crack
  - 20 ply panel Blade penetrated panel



# Test Results – 20 Ply Panel

- Blade caused one long longitudinal tear through the panel and four front side cracks that did not extend through to the backside
- Blade completely penetrated the panel
- Model did predict penetration would occur, but did not accurately predict the damage



## Test Results – 24 Ply Panel





# **Open Rotor Shielding Test Findings**

- Good global *correlation* with pretest predictions
- 24 Ply panel deflected the blade and did not have a thru failure
  - Localized, non-penetrating damage occurred
- 20 Ply panel was cracked completely through
  - Blade completely penetrated panel
  - Model did predict penetration would occur, but did not accurately predict the degree of damage
    - Crack was longer than pretest prediction.



# **Open Rotor Shielding Program Conclusions**

- Composite shielding may be a feasible solution to fuselage shielding for open rotor engines
- For counter-rotating blades (2 rotors) shielding weight added estimated to be less than 250 lb.
- Advances in composite impact models needed to predict accurate failure modes and to be predictive rather than correlative



# **Closing Comments**

- Use of Analysis is becoming more prevalent
- To substitute analysis for test requires significant effort by the applicant:
  - Demonstration of modeling expertise
    - Includes prior test/analysis demonstrations on which modeling experience & capability have been correlated
  - Validation of model predictive capability
    - Recognize that validation is different from correlation
  - Ability to close loop between predictions and expectations from predictions
    - i.e. use of other tests to validate key components
  - The model and modeling process must be auditable



#### **FAA Resources For Non-Linear Analysis**

- FAA 33.94 Fan Blade Out Rule Owner Engine & Propeller Directorate (ANE)
  - Jay Turnburg (781) 238-7116
- FAA Containment and Impact R&D W.J. Hughes Technical Center
  - Bill Emmerling (609) 485-4009
    Dan Cordasco (609) 485-4970
- FAA Chief Scientist for Engine Dynamics
  - Chip Queitzsch (703) 915-5351



## **Organizations Participating in the FAA Non-Linear Analysis R&D Program**

#### Government Agencies

- NASA Glenn Research Center
- Naval Air Warfare Center, China Lake
- Lawrence Livermore Laboratory

#### • Universities

- George Mason University
- Ohio State University
- Arizona State University
- George Washington University
- University of California, Berkeley
- Stanford

#### • Industry

- Boeing
- Honeywell
- Pratt & Whitney
- Stanford Research Institute



# **Questions?**

